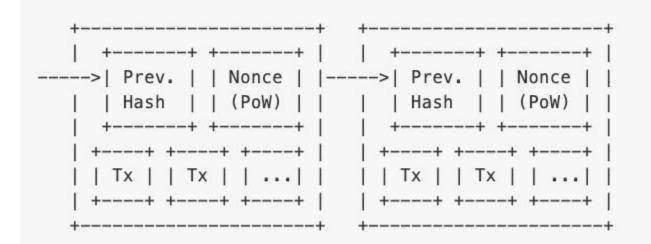


Expanding Blockchain Horizons through Privacy-Preserving Computation

Lorenzo Gentile

PhD thesis IT University of Copenhagen 2023 Computer Science Department



MPC introduction: Yao's Millionaires' problem

• Introduced in 1982 by computer scientist Andrew Yao: two millionaires, Alice and Bob, are interested in knowing which of them is richer without revealing their actual wealth.

- Compute f(a, b) while preserving the privacy of a and b.
- Theoretical result shows that any function can be evaluated on private inputs.

Blockchain introduction: Bitcoin

Courtesy of Satoshi Nakamoto (2008)

Blockchain introduction: smart contracts

- Smart contracts allow to describe **arbitrarily complex conditions** under which transactions might take place among the parties.
- In the context of this thesis we adopt a **public** blockchain and smart contracts to **automatically enforce** part of the protocols.

Research outputs

- FAST: Fair Auctions via Secret Transactions (ACNS 2022)
- SoK: Mitigation of Front-running in Decentralized Finance (DeFi 2022 FC 2022 workshop)
- PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials (CT-RSA 2023)

FAST: Fair Auctions via Secret Transactions

- Efficient MPC protocols for both first and second-price sealed-bid auctions with fairness against rational adversaries, leveraging secret cryptocurrency transactions and public smart contracts.
- Cheaters are identified and financially punished by losing a secret collateral deposit .
- It is always more profitable to execute the protocol honestly than to cheat.

SoK: Mitigation of Front-running in Decentralized Finance

- Front-running is the malicious act of both manipulating the order of pending trades and injecting additional trades to **make a profit at the cost of other users.**
- We describe **common front-running attacks**, propose a **schema of front-running mitigation categories**, assess the **state-of-the-art techniques** in each category and illustrate **remaining attacks**.

PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials

- We introduce the notion of anonymous credentials with Publicly Auditable Privacy Revocation (PAPR).
- Formalize it as an **ideal functionality** and propose a **realization** that is secure under **standard assumptions in the Universal Composability (UC) framework** against **static adversaries**.
- We show how to modify our construction to make it secure against mobile adversaries.

FAST: Fair Auctions via Secret Transactions

ACNS 2022

Bernardo David, IT University of Copenhagen Lorenzo Gentile, IT University of Copenhagen Mohsen Pourpouneh, University of Copenhagen

FAST protocol

- Parties \mathcal{P}_i with $i \in 1, ..., n$.
- Bid $b_i = b_{i1} | \dots | b_{il}$ with $b_{ir} \in \{0, 1\}$.

```
b_1 +----+
---> | FAST | b_w = max(b_1,...,b_n)
... | | --->
b_n | | P_w sends b_w to the auctioneer
---> | |
+----+
```

• Compute *max*(*b*₁,...,*b*_n) while preserving the privacy of *b*₁,...,*b*_n (similarly for second price).

Motivation

- It may be **not feasible** or **expensive** to find a trusted third party.
- A third party may cheat, without being detected, to **increase profit** (e.g., increase second price).

FAST in a nutshell

- Parties send **secret deposits** to a **smart contract**.
- Cheating parties lost their deposits.
- Rational parties do not cheat.
- Fairness is achieved.

Building blocks

- Secret deposits.
- Anonymous veto protocol.
- Non interactive zero knowledge proofs (NIZKs).
- Cheating detection.
- Recovery committee.

Secret deposits (novel technique)

- In order to make rational parties do not cheat, **the deposits have to be equal to the bids plus work**.
- However, the **privacy of the bids has to be preserved**.
- Secret deposits are adopted (e.g., using **confidential transactions** by Greg Maxwell).

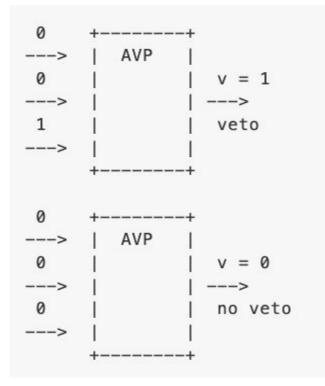
Confidential transactions (details)

- Parties \mathcal{P}_i with $i \in 1, ..., n$.
- Bid $b_i = b_{i1} | \dots | b_{il}$ with $b_{ir} \in \{0, 1\}$.
- \mathscr{P}_i computes the bit commitments as $c_{ir} = g^{b_{ir}}h^{r_{ir}}$ to each bit b_{ir} of b_i (used in NIZKs later), and the bid commitment as:

$$c_{i} = \prod_{r=1}^{l} c_{ir}^{2^{l-r}} = g^{b_{i}} h^{\sum_{r=1}^{l} 2^{l-r} r_{ir}}$$

• \mathcal{P}_i send a confidential transaction to the smart contract:

- The smart contract verifies the validity of the confidential transaction (**inputs** equal to outputs and range proofs).
- \mathscr{P}_i verifies for each other party \mathscr{P}_j that $c_j = \prod_{k=1}^{n} c_{jk}^{2^{l-k}}$ for $j \in \{1, ..., n\} \setminus i$.



Anonymous veto protocol

- Parties \mathcal{P}_i with $i \in 1, ..., n$.
- Bit $b_i \in \{0, 1\}$.

• Compute $b_1 \vee \ldots \vee b_n$ while preserving the privacy of b_1, \ldots, b_n .

Anonymous veto protocol (examples)

Anonymous veto protocol (details)

- **Round 1.** \mathscr{P}_i chooses $x_i \xleftarrow{u}{\leftarrow} \mathbb{Z}_q$ (uniformly at random), computes $X_i = g^{x_i}$ and broadcasts X_i .
- **Round 2.** Upon receiving X_i from all other parties \mathcal{P}_j , \mathcal{P}_i computes

$$Y_{i} = \prod_{k=1}^{i-1} X_{k} / \prod_{k=i+1}^{n} X_{k} = g^{\left(\sum_{k=1}^{i-1} x_{k} - \sum_{k=i+1}^{n} x_{k}\right)}$$

and then broadcasts the following message:

$$v_i = \begin{cases} Y_i^{x_i}, & \text{if } b_i = 0\\ r \xleftarrow{u} \mathbb{Z}_q, g^r, & \text{if } b_i = 1 \end{cases}$$

• **Output.** All parties compute $V = \prod_{i=1}^{n} v_i$ after receiving all the v_i 's from the other parties. Note that:

$$V = 1 \Leftrightarrow b_i = 0 \forall i \in \{1, ..., n\}$$

i.e., V = 1 if and only if there is no veto.

Anonymous veto protocol (detailed example)

$$n = 3$$

$$X_{1} = g^{x_{1}}, X_{2} = g^{x_{2}}, X_{3} = g^{x_{3}}$$

$$Y_{1} = g^{-x_{2} - x_{3}}, Y_{2} = g^{x_{1} - x_{3}}, Y_{3} = g^{x_{1} + x_{2}}$$

if we assume $b_i = 0 \forall i \in \{1, 2, 3\}$, then:

$$V = v_1 \cdot v_2 \cdot v_3 = Y_1^{x_1} \cdot Y_2^{x_2} \cdot Y_3^{x_3}$$

= $g^{-x_1(x_2 + x_3)} \cdot g^{x_2(x_1 - x_3)} \cdot g^{x_3(x_1 + x_2)}$
= $g^0 = 1 \Rightarrow$ no veto

Anonymous first price auction protocol

• (idea) Use bit-by-bit AVP.

Anonymous first price auction protocol

• (idea) Modify input bits according to previous inputs and outputs.

• if $v_r = 1$ but $b_{ir} = 0$ then $d_{ik} = 0$ for k = r + 1, ..., l, where d_{ik} stands for declared bit.

NIZK proofs

- How can we guarantee that the rule "if $v_r = 1$ but $b_{ir} = 0$ then $d_{ik} = 0$ for k = r + 1, ..., l" is followed by the parties?
- Non interactive zero knowledge proofs guarantee that d_{ir} are correctly computed according to the inputs and outputs of the previous rounds.

NIZK proofs - Before First Veto (details)

$$v_{ir} = egin{cases} Y_{ir}^{x_{ir}}, & ext{if } b_{ir} = 0 \ g^{ar{r}_{ir}}, & ext{if } b_{ir} = 1 \end{cases}$$

$$BV_{ir} \leftarrow BV\{b_{ir}, r_{ir}, x_{ir}, \bar{r}_{ir} |$$

$$\left(\frac{c_{ir}}{g^{b_{ir}}} = c_{ir} = h^{r_{ir}} \land v_{ir} = Y_{ir}^{x_{ir}} \land X_{ir} = g^{x_{ir}}\right) \lor$$

$$\left(\frac{c_{ir}}{g^{b_{ir}}} = \frac{c_{ir}}{g} = h^{r_{ir}} \land v_{ir} = g^{\bar{r}_{ir}}\right) \}$$

Logical condition to prove:

$$(b_{ir}=0 \land d_{ir}=0) \lor (b_{ir}=1 \land d_{ir}=1)$$

NIZK proofs - After First Veto (details)

$$v_{ir} = \left\{egin{array}{ll} Y_{ir}^{x_{ir}}, & ext{if } b_{ir} = 0 \ g^{r_{ir}}, & ext{if } d_{i\hat{r}} = 1 \wedge b_{ir} = 1 \ Y_{ir}^{x_{ir}}, & ext{if } d_{i\hat{r}} = 0 \wedge b_{ir} = 1 \end{array}
ight.$$

$$AV_{ir} \leftarrow AV\{b_{ir}, r_{ir}, x_{ir}, \bar{r}_{ir}, \bar{r}_{ir}, x_{ir}\}$$

$$\left(\frac{c_{ir}}{g^{b_{ir}}}=c_{ir}=h^{r_{ir}}\wedge v_{ir}=Y_{ir}^{x_{ir}}\wedge X_{ir}=g^{x_{ir}}\right)\vee$$

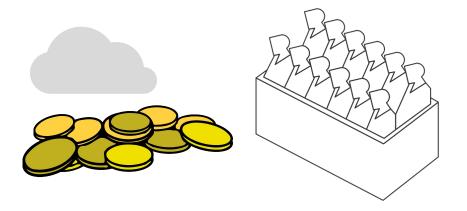
$$\left(\frac{c_{ir}}{g^{b_{ir}}} = \frac{c_{ir}}{g} = h^{r_{ir}} \wedge d_{i\hat{r}} = g^{\bar{r}_{i\hat{r}}} \wedge v_{ir} = g^{\bar{r}_{ir}} \right) \vee$$

$$\left(\frac{c_{ir}}{g^{b_{ir}}} = \frac{c_{ir}}{g} = h^{r_{ir}} \wedge d_{i\hat{r}} = Y^{x_{i\hat{r}}}_{i\hat{r}} \wedge X_{i\hat{r}} = g^{x_{i\hat{r}}}$$

 $\wedge v_{ir} = Y_{ir}^{x_{ir}} \wedge X_{ir} = g^{x_{ir}} \}$

Logical condition to prove:

$$(b_{ir}=0 \land d_{ir}=0) \lor (b_{ir}=1 \land d_{ir}=1 \land d_{ir}=1) \lor (b_{ir}=1 \land d_{ir}=0 \land d_{ir}=0)$$


Cheating detection

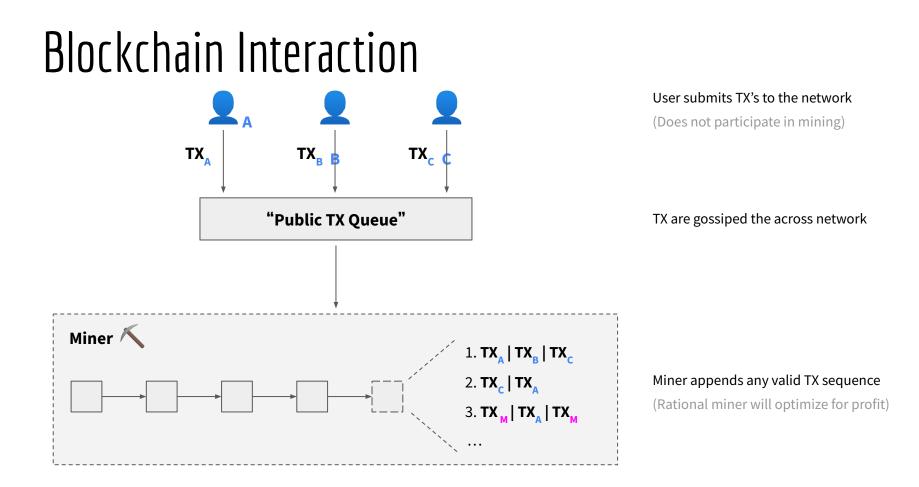
- How can we detect cheating parties?
 - NIZK are publicly verifiable.
 - Signed messages allow to prove inconsistencies.
- If cheating is detected, a **recovery stage** is executed.

Recovery committee

- The opening of the confidential transaction ($c_i = g^{b_i h_{r=1}^{i} 2^{l-r_{r_{ir}}}}$) committed amount is **secret shared** with a committee using **PVSS**.
- In the recovery stage the opening is reconstructed and the **confidential transaction is spent**.

Extension to second price auction

- (idea) Execute again the protocol without the winning party.
- (better idea) Once the winning party \mathscr{P}_w is identified, conclude the execution to compute the second price without \mathscr{P}_w .
- From a game theory perspective, bidding truthfully is a **dominant strategy**.



SoK: Mitigation of Front-running in Decentralized Finance

DeFi 2022 - FC 2022 workshop

Carsten Baum, Technical University of Denmark James Hsin-yu Chiang, Technical University of Denmark Bernardo David, IT University of Copenhagen Tore Kasper Frederiksen, Protocol Labs Lorenzo Gentile, IT University of Copenhagen

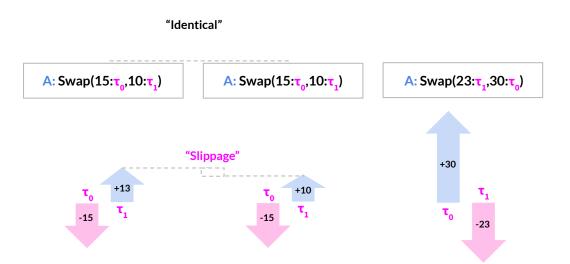
Front-running **Adversary**

Miner has the power to:

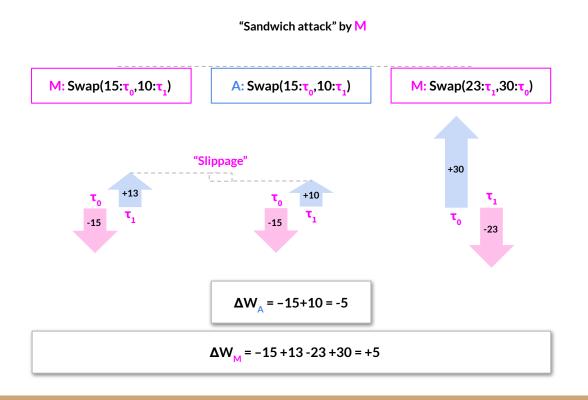
1. Infer user intentions from ...

the pending TX queue the blockchain state

2. Append TX sequence to the blockchain constructed from ...


the pending TX queue its own TXs

Compute optimal strategy


(Causalities: Pending TX and State)

Execute optimal strategy

AMM Slippage

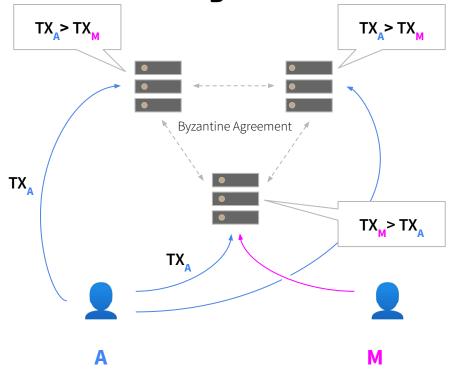
AMM Sandwich Attack

Front-running **is a Problem**

1. Honest users incur a financial loss

Sandwich attacks

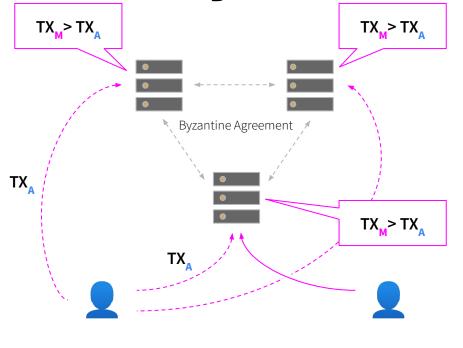
Stolen Strategies (Arbitrage/Liquidation)


2. Generates unnecessary demand for block-space

Network Congestion from front-running TXs

Front-running **Mitigation**

Miner powers	Mitigation	Proposed Techniques
Action sequencing	Fair Ordering	Fair Ordering Consensus
	Batching of blinded inputs	(Hash Commitments) Time-lock Crypto Threshold Crypto
Inference of user intent	Private balances & secret state + batching of blinded inputs	Secure <u>M</u> ulti- <u>P</u> arty <u>C</u> omputation

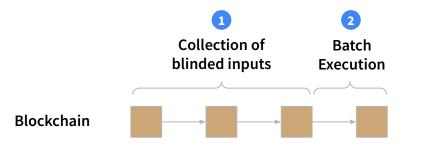

Fair Ordering Consensus

Fair-ordering BA consensus [Wendy, KDK21, KDL⁺21, CSMZ21]

γ-receipt-order-fairness [KDK21, KDL⁺21] TX_A will be finalized prior to TX_M if TX_A is observed prior to TX_M by a <u>γ-fraction</u> of nodes

Fair Ordering Consensus

Fair-ordering BA consensus [Wendy, KDK21, KDL⁺21, CSMZ21]

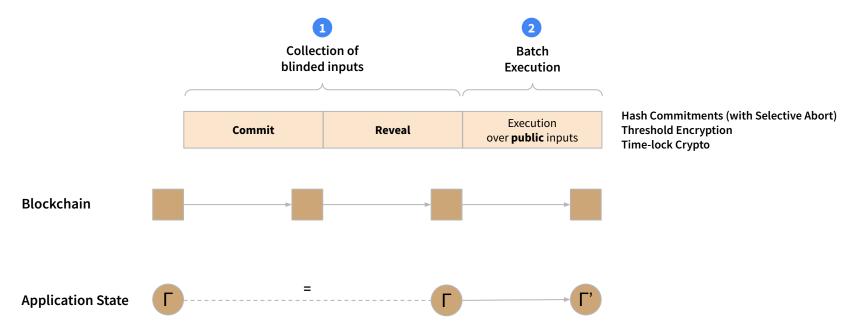

γ-receipt-order-fairness [KDK21, KDL⁺21] TX_A will be finalized prior to TX_M if TX_A is observed prior to TX_M by a <u>γ-fraction</u> of nodes

Open challenges: P2P networks / Incentive compatibility

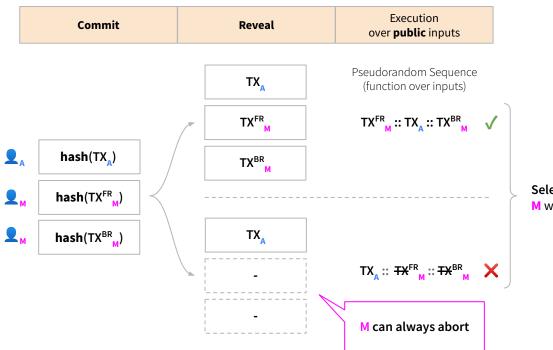
Front-running **Mitigation**

	Miner powers	Mitigation	Proposed Techniques
	Action sequencing Inference of user intent	Fair Ordering	Fair Ordering Consensus
,		Batching of blinded inputs	(Hash Commitments) Time-lock Crypto Threshold Crypto
		Private balances & secret state + batching of blinded inputs	Secure <u>M</u> ulti- <u>P</u> arty <u>C</u> omputation

Batching of Blinded Inputs

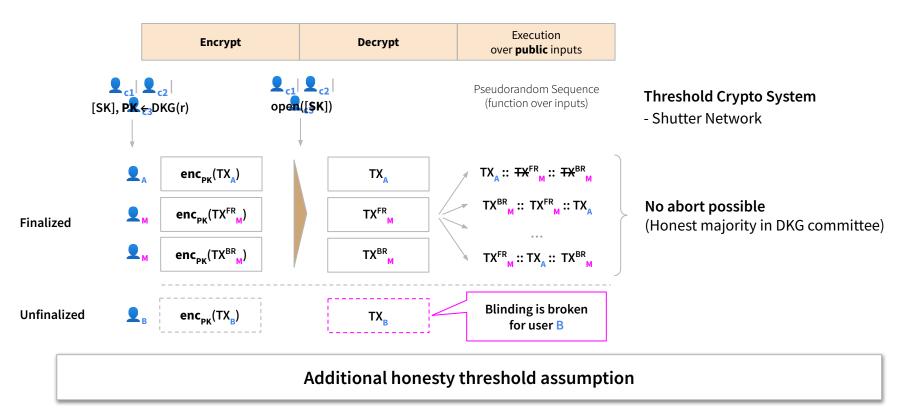

1. Inference of user intent

2. Action sequencing

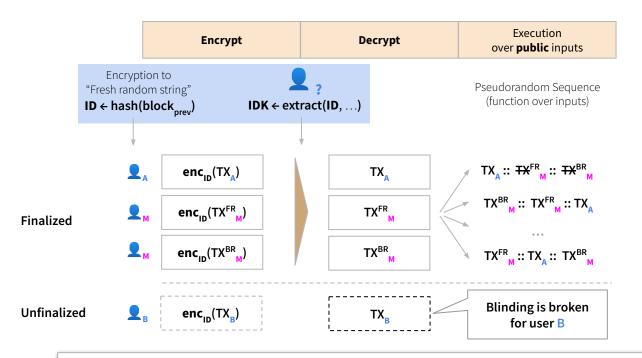

1 Inputs are blinded

2 Pseudorandom shuffling / (Input aggregation)

Batching of Blinded Inputs



Order Batching: Hash Commitments



Selective Abort: M will only *reveal* if attack is successful

Order Batching: Threshold Encryption

Order Batching: **Delay Encryption**

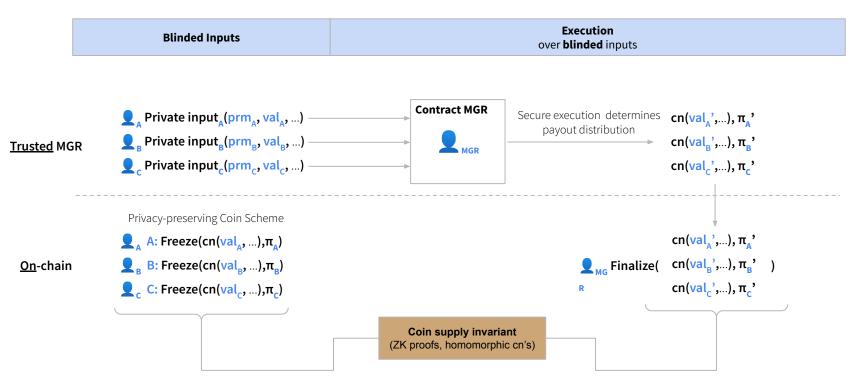

Delay Encryption [DeFeo, Burdges] - Single extraction for all inputs

Alternatively: Time-lock Puzzles

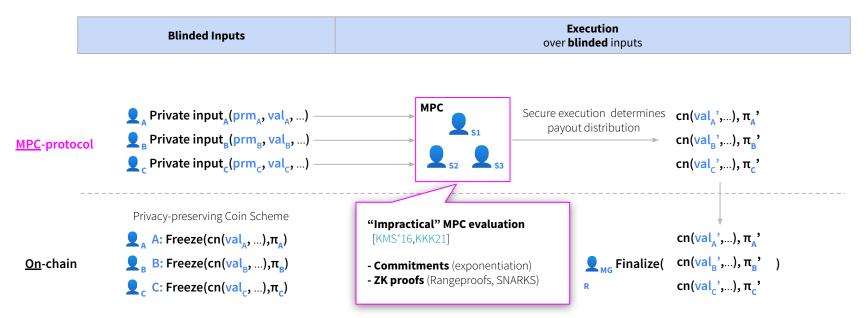
- One extraction per input [RSW]

Open challenge: Delay-parameterization

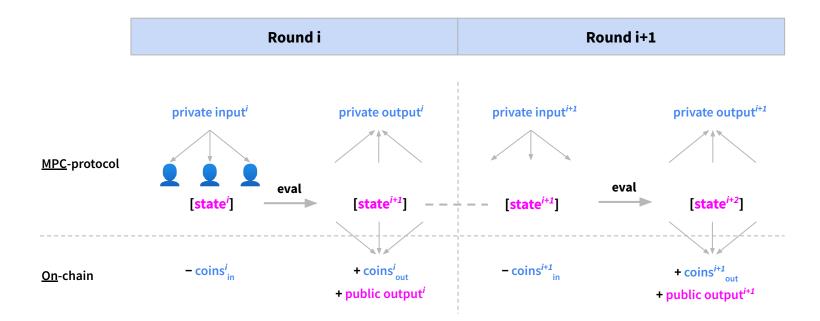
However: **Batching is not enough**

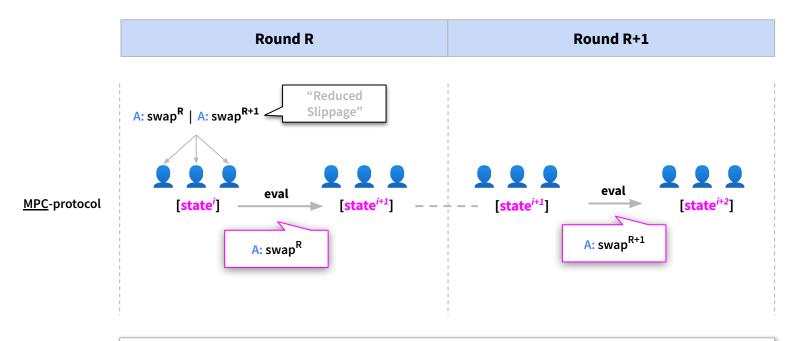


Private balances are necessary to prevent front-running


Front-running **Mitigation**

	Miner powers	Mitigation	Proposed Techniques
	Action sequencing	Fair Ordering	Fair Ordering Consensus
Inference of user intent		Batching of blinded inputs	(Hash Commitments) Time-lock Crypto Threshold Crypto
	Private balances & state + batching of blinded inputs	Secure <u>M</u> ulti- <u>P</u> arty <u>C</u> omputation	


Privacy-preserving Smart Contracts [Hawk]


Privacy-preserving Smart Contracts with MPC

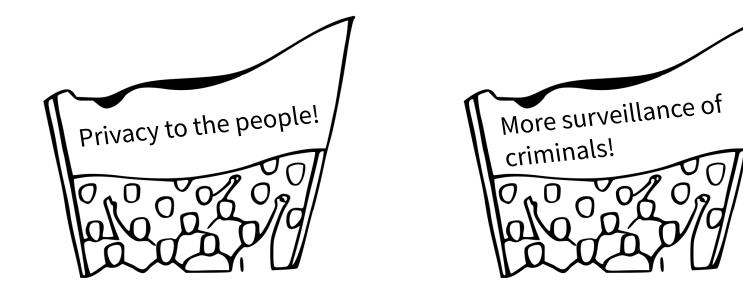
MPC: Secret Application State

MPC: Fairly Scheduled Orders

In contrast: Public order schedule can be front-run!

Front-running **Mitigation**

Miner powers	Mitigation	Proposed Techniques
Action sequencing	Fair Ordering	Fair Ordering Consensus
	Batching of blinded inputs	(Hash Commitments) Time-lock Crypto Threshold Crypto
Inference of user intent	Private balances & secret state + batching of blinded inputs	Secure <u>M</u> ulti- <u>P</u> arty <u>C</u> omputation


PAPR: Publicly Auditable Privacy Revocation for Anonymous Credentials

CT-RSA 2023

Joakim Brorsson, Lund University Bernardo David, IT University of Copenhagen Lorenzo Gentile, IT University of Copenhagen Elena Pagnin, Chalmers University of Technology Paul Stankovski Wagner, Lund University

Conflicting interests: user privacy and accountability

Conflict interests: examples

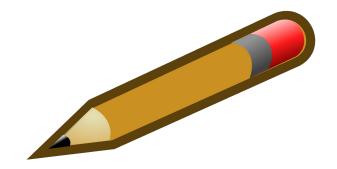
Regulations: (KYC, AML)

VS.

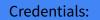
Legal cases:

Conditional privacy

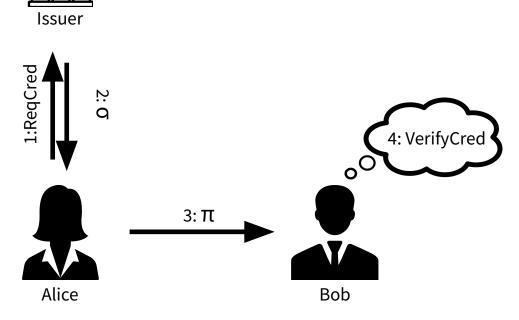
- Conditional privacy avoids privacy vs. accountability conflict
 - Privacy given by default
 - If misbehavior occurs, the privacy can be revoked
- Two flavors of conditional privacy:
 - Identity tracing by "Self-Revocation"
 - Suitable for well defined misbehavior
 - E.g., double spend in e-cash
 - Does not rely on TTP
 - Central authorities (or central committee) can trace real identity at will
 - Does not limit what can be considered as misbehavior
 - Relies on TTP


Trusting TTPs

- Are TTPs trustable?
 - e.g. use of IP tracing laws.
- Are TTPs competent?
 - Countless data leaks.
 - Even if we trust honesty of TTP, it might be subject to attacks.

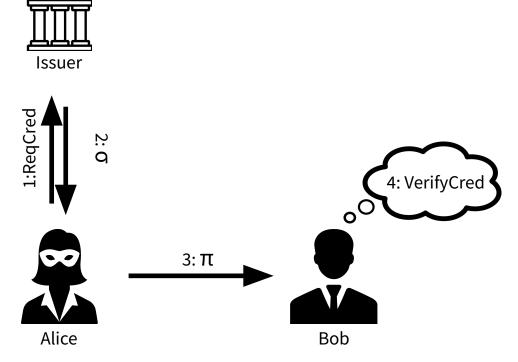


Outline


- We will discuss how to create privacy revocation with *public auditability*.
- Apply this tool to anonymous credentials

Background on credentials

- Setup()
- KeyGen() \rightarrow sk, pk
- ReqCred(pk, ID) $\rightarrow \sigma$
- ShowCred(sk, σ) $\rightarrow \pi$
- VerifyCred(pk, σ , π) $\rightarrow 0/1$


Background on credentials

Anonymous Credentials:

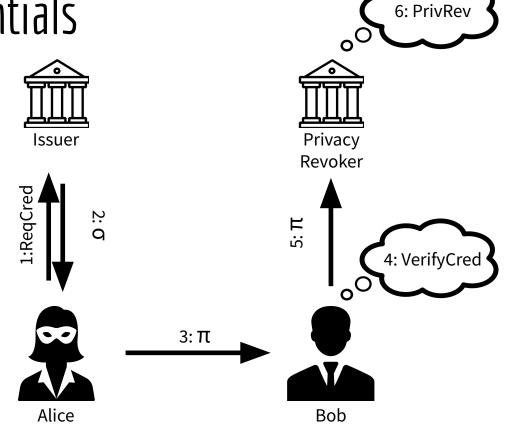
Anonymous Showing

Credentials:

- Setup()
- KeyGen() → sk, pk
- ReqCred(pk, ID) $\rightarrow \sigma$
- ShowCred(k, σ) $\rightarrow \pi$
- VerifyCred(pk, σ , π) \rightarrow 0/1

Background on credentials

Revokable Privacy:


• $PrivRev(\pi) \rightarrow ID$

Anonymous Credentials:

Anonymous Showing

Credentials:

- Setup()
- KeyGen() → sk, pk
- ReqCred(pk, ID) $\rightarrow \sigma$
- ShowCred(sk, σ) $\rightarrow \pi$
- VerifyCred(pk, σ , π) \rightarrow 0/1

Definition:

An Anonymous Credential Scheme with *Publicly Auditable Privacy Revocation* has:

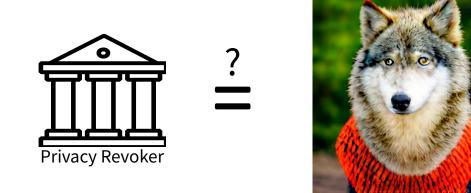
Definition:

An Anonymous Credential Scheme with *Publicly Auditable Privacy Revocation* has:

- 1. Basic properties of Anonymous Credentials
 - e.g. unforgeability, anonymity

Definition:

An Anonymous Credential Scheme with *Publicly Auditable Privacy Revocation* has:


- 1. Basic properties of Anonymous Credentials
 - e.g. unforgeability, anonymity
- 2. Privacy Revocations possible, but only upon public announcement
 - Models a malicious revocation authority

Definition:

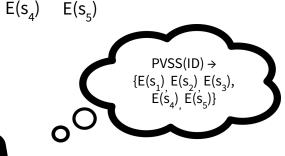
An Anonymous Credential Scheme with *Publicly Auditable Privacy Revocation* has:

- 1. Basic properties of Anonymous Credentials
 - e.g. unforgeability, anonymity
- 2. Privacy Revocations possible, but only upon public announcement
 - Models a malicious revocation authority
- 3. Guaranteed identity tracing
 - Models a malicious user

Problem

How to guarantee that the privacy revoker is not a "wolf in sheep clothing"?

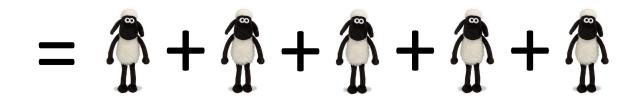
^{*}Neither animals were harmed nor cryptographers exposed to risks. Thanks to DALL-E for generating the picture.

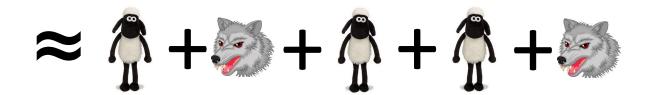

*

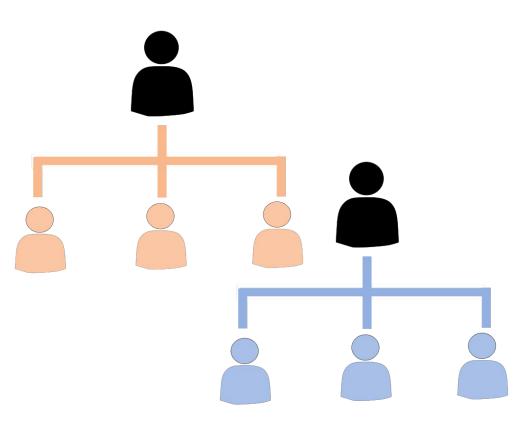
Known solutions

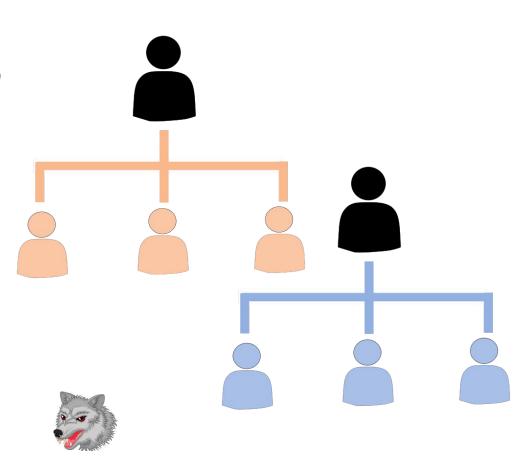
- Replace central authority with committee of authorities
- Secret-share identity to committee

 $E(s_1) \quad E(s_2) \quad E(s_3) \quad E(s_4) \quad E(s_5)$



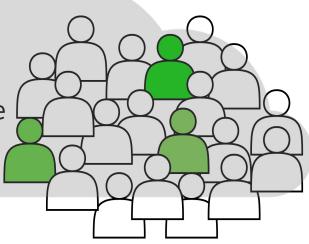

Known solutions


Privacy Revoker


Finding trusted parties

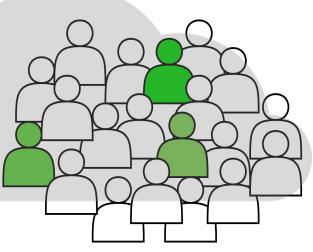
• Hard to find a privacy revoking committee trusted by all users

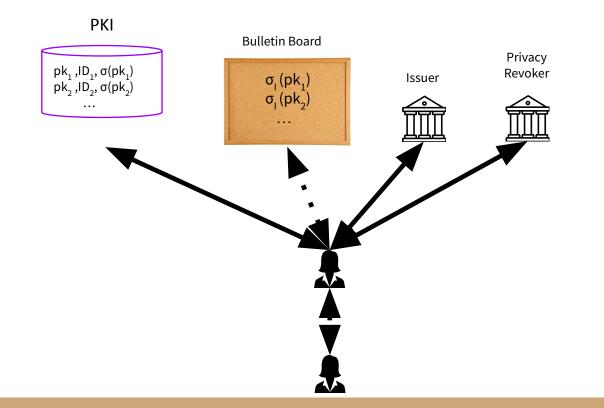
Finding trusted parties


- Hard to find a privacy revoking committee trusted by all users
- A known committee is targetable by powerful adversary
 - Recall examples from introduction

Our solution

Our Solution: Hidden Committees


- Assume a large set of candidates with honest majority, e.g. users
- Using all candidates as committee does not scale
- Select a committee at random. Don't reveal it
- Store revocation data with committee


Our solution

How does it solve our problem?

- Finding committee members is a non-issue with random selection from an honest majority
- A Hidden Committee is not targetable
- Thus access to revocation data requires a *public request* for committee cooperation

System entities

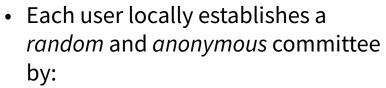
- **PKI** with a list of user public keys and identities
- Bulletin Board which users can post anonymously to
- **Users** who can interact anonymously
- **Issuer** issues anonymous credentials
- **Privacy Revoker** revokes anonymity

Local hidden committees

 $\overline{\mathbf{A}}$

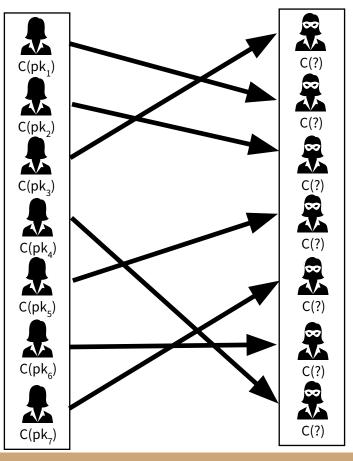
C(pk₁)

 $C(pk_2)$

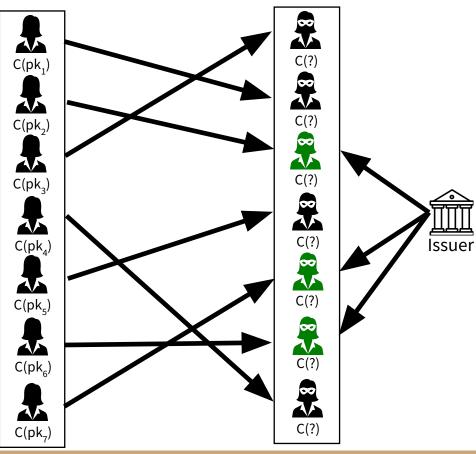

C(pk₃)

C(pk₄)

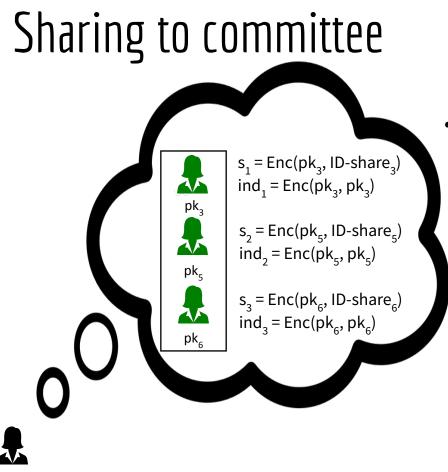
C(pk₅)


C(pk₆)

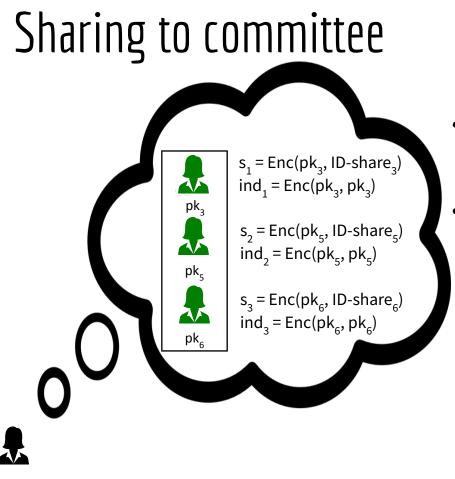
C(pk₇)


1. Obtain list of *all enrolled* public keys and *openly commit to them*

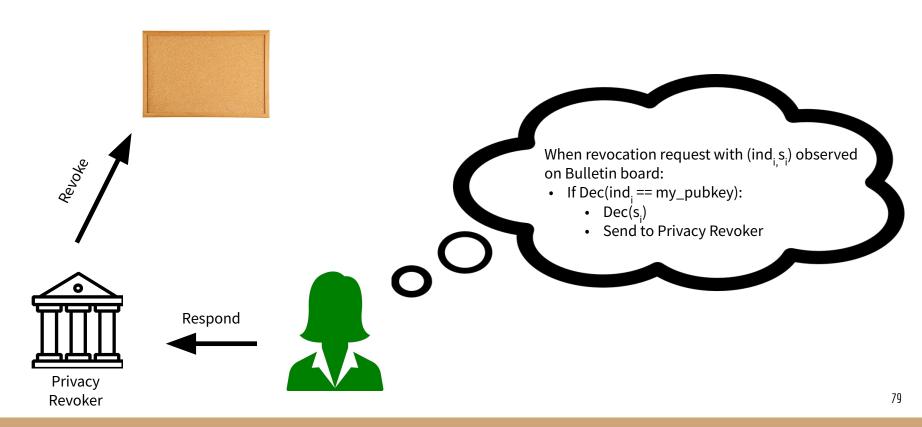
Local hidden committees



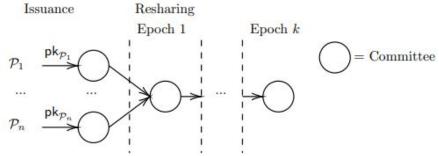
- Each user locally establishes a *random* and *anonymous* committee by:
 - 1. Obtain list of *all enrolled* public keys and *openly commit to them*
 - 2. Randomly Shuffle the list and re-randomize the commitments (local operation)
 - 3. Prove correct shuffling in zero-knowledge
 - Publish on Bulletin Board


Establishing the committee

- Each user locally establishes a *random* and *anonymous* committee by:
 - 1. Obtain list of *all enrolled* public keys and *openly commit to them*
 - 2. Randomly Shuffle the list and re-randomize the commitments (local operation)
 - 3. Prove correct shuffling in zero-knowledge
 - Publish on Bulletin Board
 - 4. Await issuer randomly selecting a subset of these entries
 - Publish on Bulletin Board



- Escrow Identity:
 - 1. Construct secret shares of identity
 - 2. Encrypt *shares* and *indicators* for selected committee
 - target anonymous encryption
 - prove correctness of
 - Identity
 - Encrypted Shares
 - Committee
 - Publish on Bulletin Board
 - 3. Issuer signs credential
 - Publish on Bulletin Board


- Result:
 - 1. a hidden committee which can reconstruct the identity of a user
- Note:
 - 1. no global randomness
 - 2. no interaction with committee

Privacy revocation

From static to mobile adversary

- YOSO proactive secret sharing:
 - Before the start of each epoch, the committees **reshare the identities towards a new single anonymous committee**.

- YOSO threshold encryption:
 - Hidden committee holds shares of the secret key for threshold encryption, necessary to decrypt the identities that are encrypted under the corresponding public key for threshold encryption.
 - Communication complexity is independent from the number of credentials issued.

Summary

 Alice is now happy, since she has an anonymous credential and will know if her privacy is revoked

• Authorities are happy since they can trace identities of criminals

Conclusion

- In the context of **auctions**, we proposed **efficient MPC protocols for first and second-price sealed-bid auctions** based on **secret deposits**, which represent a novel technique. As **future work**, this technique may be **extended to other applications**.
- In the context of **decentralized finance**, we proposed a **schema of frontrunning mitigation categories**, assessed **state-of-the-art techniques** and illustrated **remaining attacks**. As **future work**, protocols **efficiently realizing these mitigation technique** may be developed.
- In the context of anonymous credentials, we introduced the notion of Publicly Auditable Privacy Revocation (PAPR) through an ideal functionality and proposed a realization that is secure in the Universal Composability (UC) framework. As future work, efficient non-UC instantiations may be studied.

Thanks for listening, and all the rest.

Facts about my PhD journey:

- # nationalities of the coauthors: 7
- # visited countries: 5

- # heartbeats according to my smartwatch: 134.784.000 🧡
- # lost hairs according to my barber: non-negligible \gg
- # cool colleagues and friends met: countless 🌈